

News Release

Monument Announces Encouraging Results from Recent Drilling at New Gold Field Peranggih Project

Vancouver, B.C., November 28, 2017, Monument Mining Limited (TSX-V: MMY and FSE: D7Q1) "Monument" or the "Company" is pleased to report significant results from its recently completed drilling program at the Peranggih Gold Prospect, located approximately 10 km North of the Selinsing Gold Mine (Figure 1). A close spaced 5m x 5m Rotary Air Blast (RAB) drilling program together with previous exploration has successfully delineated a zone of higher grade gold material, indicating that the mineralization occurs in the same regional shearing structure hosting Selinsing and Buffalo Reef deposits.

Highlights of Significant Intercepts

November 28, 2017

The recent 2017 close spaced RAB drilling program was carried out at an historic mining site to test 150m strike length x 80m width of the mineralization. This allowed the accurate identification of several high grade gold (HG) zones surrounded by a main low grade (LG) halo. The significant drill intersections (Au >2.0 g/t & >5m length) within a more consistent high grade gold area are presented in Table 1.The full set of drill results for the holes intercepting this HG gold mineralization occurrence are listed in Appendix A and Appendix B.

The Peranggih Prospect has been identified as a new Gold Field that has the potential to host a significant mineralized hydrothermal breccia system.

Figure 1 – Local Geology of the Peranggih Area

Release #15 - 2017

HOLE ID*	From(m)	To (m)	Drilled Width (m)	~True Width (m)	Au g/t
1_PGC006	2	8	6.0	4.3	3.07
1_PGC007	0	10	10.0	6.7	2.94
1_PGC019	0	10	10.0	7.7	2.28
1_PGC020	0	5	5.0	3.9	2.68
1_PGC428	1	10	9.0	6.6	3.14
1_PGC429	1	10	9.0	8.0	2.34
1_PGC430	0	10	10.0	8.7	2.49

Table 1: Highlight of the best intercepts at Peranggih – Close Spaced RAB Drilling in 2017

*all vertical holes

The low and high grade gold mineralization is hosted in both matrix supported and clast supported quartz breccia. Significant coarse free gold was observed hosted in the breccia matrix. The matrix is friable and loose material composing clay minerals and small rock fragments, as well as mixed ore and/or gangue minerals (Figure 2).

Figure 2– Exposure of highly fractured quartz breccia on the old pit wall

This leads to a nugget effect on the gold distribution throughout the deposit. The presence of well crystallized coarse free disseminated gold in the matrixes was not well recognized during the earlier exploration campaigns. This key finding had changed the perspective and approach facilitate better and more appropriate sampling and analysis methods to be applied to future exploration programs which include comparative work between traditional fire assay, screen fire assay as well as reconciliation of grade by way of bulk sampling.

The close spaced shallow drilling can be used as a cost effective tool to define shallow and broad gold mineralization within the breccia matrix that occur at this site

Peranggih

Peranggih was historically mined in the late 1980's and into the early 1990's by local artisanal miners. Gold was recovered by traditional sluicing and residual tailings and other evidence indicates substantial work was undertaken throughout this period.

In 2014 the company conducted exploration drilling with encouraging results, followed by soil sampling, trenching and other reconnaissance mapping to understand the extent and boundaries of the system at Peranggih. The recent work determined that the gold mineralization is associated with a hydrothermal breccia system which is distinct from the hydrothermal veins system that occurs at Selinsing and Buffalo Reef, but still related to the same regional shearing structuring.

Previous activities plus more recent exploration works, totaling 1,700m for 21 trenches, 2,900m of Diamond Drilling (DD) and Reverse Circulation (RC) drilling for 35 drill holes, and 2,800m of close spaced RAB drilling for approximately 300 drill holes (completed in 2017) have been used to outline an exploration target of 20,000 to 30,000 oz Au contained within 1 to 2 Mt @ 0.3 to 2.0 g/t Au. The potential tonnages and grades are conceptual in nature and are based on historical and recent drill and trench results that defined the approximate length, thickness, depth and grade of the portion of the internal resource estimate. There has been insufficient exploration to define a current resource, and the Company cautions that there is a risk that further exploration will not completely result in the delineation of a current mineral resource.

Sampling, assaying and cyanide leach test work to date shows that recoveries exceed 80% ranging up to 98%. The system extends over a distance of approximately 1.2 kilometers in length with varying widths of between 25 to 50 meters with identified areas of high gold grade mineralization surrounded by a halo of lower grade mineralization. The system is open down dip and along strike.

Follow up Exploration Programs

Further exploration work primarily aims to carry out resource definition drilling around an area selected for bulk sample testwork. Regional exploration should also identify other target areas within the same Peranggih oxide system, eventually adding oxide mill feed sources to the Company.

The Company plans to mine a bulk sample of up to 50,000 tonnes, feed it to the existing Selinsing oxide gold processing plant to establish the average grade of the close spaced drilled area; and test the metallurgical performance at plant scale. This work can commence as soon as the access road has been prepared which is estimated to be in the beginning of 2018.

Roger Stangler, Chief Managing Geologist of the Company, MEng, MAusIMM, MAIG, has prepared, reviewed, supervised the preparation and approved the scientific and technical disclosure in this news release as a Qualified Person under NI43-101 standards.

About Monument

Monument Mining Limited (TSX-V: MMY, FSE:D7Q1) is an established Canadian gold producer that owns and operates the Selinsing Gold Mine in Malaysia. Its experienced management team is committed to growth and is advancing several exploration and development projects including the Mengapur Polymetallic Project, in Pahang State of Malaysia, and the Murchison Gold Projects comprising Burnakura, Gabanintha and Tuckanarra in the Murchison area of Western Australia. The Company employs approximately 190 people in both regions and is committed to the highest standards of environmental management, social responsibility, and health and safety for its employees and neighboring communities.

Robert F. Baldock, President and CEO

Monument Mining Limited Suite 1580 -1100 Melville Street Vancouver, BC V6E 4A6

FOR FURTHER INFORMATION visit the company web site at www.monumentmining.com or contact:

Richard Cushing, MMY Vancouver	T: +1-604-638-1661 x102	rcushing@monumentmining.com
Wolfgang Seybold, Axino GmbH	T: +49 711-82-09-7211	wolfgang.seybold@axino.com

"Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release."

Forward-Looking Statement

This news release includes statements containing forward-looking information about Monument, its business and future plans ("forward-looking statements"). Forward-looking statements are statements that involve expectations, plans, objectives or future events that are not historical facts and include the Company's plans with respect to its mineral projects and the timing and results of proposed programs and events referred to in this news release. Generally, forward-looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or state that certain actions, events or results "may", "could", "would", "might" or "will be taken", "occur" or "be achieved". The forward-looking statements in this news release are subject to various risks, uncertainties and other factors that could cause actual results or achievements to differ materially from those expressed or implied by the forward-looking statements. These risks and certain other factors include, without limitation: risks related to general business, economic, competitive, geopolitical and social uncertainties; uncertainties regarding the results of current exploration activities; uncertainties in the progress and timing of development activities; foreign operations risks; other risks inherent in the mining industry and other risks described in the management discussion and analysis of the Company and the technical reports on the Company's projects, all of which are available under the profile of the Company on SEDAR at www.sedar.com. Material factors and assumptions used to develop forward-looking statements in this news release include: expectations regarding the estimated cash cost per ounce of gold production and the estimated cash flows which may be generated from the operations, general economic factors and other factors that may be beyond the control of Monument; assumptions and expectations regarding the results of exploration on the Company's projects; assumptions regarding the future price of gold of other minerals; the timing and amount of estimated future production; the expected timing and results of development and exploration activities; costs of future activities; capital and operating expenditures; success of exploration activities; mining or processing issues; exchange rates; and all of the factors and assumptions described in the management discussion and analysis of the Company and the technical reports on the Company's projects, all of which are available under the profile of the Company on SEDAR at www.sedar.com. Although the Company has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking statements, there may be other factors that cause results not to be as anticipated, estimated or intended. There can be no assurance that such statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. The

Company does not undertake to update any forward-looking statements, except in accordance with applicable securities laws.

Appendix A - Peranggih Close Spaced RAB Drilling Campaign 2017: collar coordinates in Kertau MRSO Coordinate System

Hole ID	End of Hole Depth (m)	East	North	RL	Dip	Azimuth
1_PGC005	10	422963.2	480242.3	130.438	-90	0
1_PGC006	10	422967.8	480242.3	130.179	-90	0
1_PGC007	10	422973.1	480242.3	124.445	-90	0
1_PGC008	2	422978.2	480242.3	123.833	-90	0
1_PGC016	10	422955.7	480247.3	132.874	-90	0
1_PGC017	10	422960.5	480247.3	130.778	-90	0
1_PGC018	10	422965.6	480247.3	129.522	-90	0
1_PGC019	10	422971.3	480247.3	125.017	-90	0
1_PGC020	10	422975.6	480247.3	124.231	-90	0
1_PGC021	10	422980.7	480247.3	123.698	-90	0
1_PGC022	10	422985.6	480247.4	122.141	-90	0
1_PGC027	10	422948.2	480252.4	135.437	-90	0
1_PGC028	10	422953.1	480252.3	134.800	-90	0
1_PGC029	10	422958.3	480252.3	130.241	-90	0
1_PGC030	10	422963.2	480252.3	129.090	-90	0
1_PGC031	10	422968.2	480252.3	128.233	-90	0
1_PGC032	10	422973.2	480252.3	124.222	-90	0
1_PGC039	10	422950.6	480257.4	135.578	-90	0
1_PGC041	10	422960.6	480257.4	128.047	-90	0
1_PGC042	10	422965.7	480257.3	127.773	-90	0
1_PGC043	10	422970.6	480257.4	123.188	-90	0
1_PGC418	10	422972.5	480232.8	126.364	-90	0
1_PGC419	10	422977.5	480232.8	124.996	-90	0
1_PGC427	10	422965.0	480237.8	129.692	-90	0
1_PGC428	10	422969.9	480237.6	127.706	-90	0
1_PGC429	10	422975.0	480237.7	125.965	-90	0
1_PGC430	10	422980.0	480237.8	123.571	-90	0
1_PGC431	10	422985.0	480237.8	122.895	-90	0

	=		11004100	 		~ [_	8	r		
Hole ID	From (m)	To (m)	Au g/t	Hole ID	From (m)	To (m)	Au g/t		Hole ID	From (m)	To (m)	Au g/t
1_PGC005	0	1	0.394	1_PGC017	4	5	0.303		1_PGC022	0	1	1.046
1_PGC005	1	2	1.203	1_PGC017	5	6	0.154		1_PGC022	1	2	0.269
1_PGC005	2	3	0.257	1_PGC017	6	7	0.122		1_PGC022	2	3	0.260
1_PGC005	3	4	1.438	1_PGC017	7	8	0.116		1_PGC022	3	4	0.173
1_PGC005	4	5	0.697	1_PGC017	8	9	0.108		1_PGC022	4	5	0.124
1_PGC005	5	6	0.460	1_PGC017	9	10	0.095		1_PGC022	5	6	0.279
1_PGC005	6	7	0.351	1_PGC018	0	1	0.738	Γ	1_PGC022	6	7	0.265
1_PGC005	7	8	0.089	1_PGC018	1	2	2.167		1_PGC022	7	8	0.199
1_PGC005	8	9	1.194	1_PGC018	2	3	1.709		1_PGC022	8	9	0.119
1_PGC005	9	10	2.935	1_PGC018	3	4	1.526	Γ	1_PGC022	9	10	0.097
1_PGC006	0	1	0.361	1_PGC018	4	5	2.502	Γ	1_PGC027	0	1	0.266
1_PGC006	1	2	0.385	1_PGC018	5	6	0.130	Γ	1_PGC027	1	2	1.006
1_PGC006	2	3	1.553	1_PGC018	6	7	1.681	Γ	1_PGC027	2	3	0.367
1_PGC006	3	4	2.640	1_PGC018	7	8	0.491	Γ	1_PGC027	3	4	0.355
1_PGC006	4	5	3.702	1_PGC018	8	9	0.037	Γ	1_PGC027	4	5	0.110
1_PGC006	5	6	2.744	1_PGC018	9	10	0.209	Γ	1_PGC027	5	6	5.651
1_PGC006	6	7	3.093	1_PGC019	0	1	2.037	Γ	1_PGC027	6	7	0.200
1_PGC006	7	8	4.687	1_PGC019	1	2	1.645	Γ	1_PGC027	7	8	0.100
1_PGC006	8	9	0.055	1_PGC019	2	3	1.131	Γ	1_PGC027	8	9	0.235
1_PGC006	9	10	0.101	1_PGC019	3	4	1.150	Γ	1_PGC027	9	10	0.250
1_PGC007	0	1	3.269	1_PGC019	4	5	1.008	Γ	1_PGC028	0	1	0.284
1_PGC007	1	2	11.440	1_PGC019	5	6	2.205	Γ	1_PGC028	1	2	0.252
1_PGC007	2	3	1.194	1_PGC019	6	7	3.410	Γ	1_PGC028	2	3	2.392
1_PGC007	3	4	1.299	1_PGC019	7	8	4.692		1_PGC028	3	4	0.640
1_PGC007	4	5	1.192	1_PGC019	8	9	3.210		1_PGC028	4	5	0.109
1_PGC007	5	6	1.952	1_PGC019	9	10	2.272	Γ	1_PGC028	5	6	0.297
1_PGC007	6	7	3.392	1_PGC020	0	1	7.756		1_PGC028	6	7	0.209
1_PGC007	7	8	2.340	1_PGC020	1	2	2.274		1_PGC028	7	8	0.215
1_PGC007	8	9	1.933	1_PGC020	2	3	1.623	Γ	1_PGC028	8	9	2.740
1_PGC007	9	10	1.387	1_PGC020	3	4	1.038		1_PGC028	9	10	1.645
1_PGC008	0	1	1.599	1_PGC020	4	5	0.711	Γ	1_PGC029	0	1	0.750
1_PGC008	1	2	3.483	1_PGC020	5	6	0.458		1_PGC029	1	2	0.574
1_PGC016	0	1	0.155	1_PGC020	6	7	0.421		1_PGC029	2	3	0.543
1_PGC016	1	2	0.105	1_PGC020	7	8	0.342		1_PGC029	3	4	0.260
1_PGC016	2	3	0.740	1_PGC020	8	9	0.783	Γ	1_PGC029	4	5	0.164
1_PGC016	3	4	0.118	1_PGC020	9	10	0.834		1_PGC029	5	6	0.220
1_PGC016	4	5	0.197	1_PGC021	0	1	1.646		1_PGC029	6	7	0.115
1_PGC016	5	6	0.286	1_PGC021	1	2	0.279		1_PGC029	7	8	0.074
1_PGC016	6	7	0.254	1_PGC021	2	3	1.166		1_PGC029	8	9	0.350
1_PGC016	7	8	0.133	1_PGC021	3	4	0.231		1_PGC029	9	10	0.253
1_PGC016	8	9	0.033	1_PGC021	4	5	0.308	ſ	1_PGC030	0	1	1.499
1_PGC016	9	10	0.094	1_PGC021	5	6	0.354	ſ	1_PGC030	1	2	0.797
1_PGC017	0	1	0.880	1_PGC021	6	7	0.987	ſ	1_PGC030	2	3	0.446
1_PGC017	1	2	0.815	1_PGC021	7	8	0.148	ſ	1_PGC030	3	4	0.507
1_PGC017	2	3	0.110	1_PGC021	8	9	1.202	ſ	1_PGC030	4	5	0.390
1_PGC017	3	4	0.441	1_PGC021	9	10	0.560	Γ	1_PGC030	5	6	0.640

Appendix B Assay Results for Peranggih Close Spaced RAB Drilling Campaign 2017

	Assa	y kesi	uits for	Peranggin (
Hole ID	From (m)	To (m)	Au g/t	Hole ID
1_PGC030	6	7	0.374	1_PGC042
1_PGC030	7	8	0.087	1_PGC042
1_PGC030	8	9	0.121	1_PGC042
1_PGC030	9	10	0.068	1_PGC042
1_PGC031	0	1	0.690	1_PGC042
1_PGC031	1	2	0.839	1_PGC042
1_PGC031	2	3	1.229	1_PGC042
1_PGC031	3	4	1.295	1_PGC042
1_PGC031	4	5	4.061	1_PGC043
1_PGC031	5	6	0.192	1_PGC043
1_PGC031	6	7	2.164	1_PGC043
1_PGC031	7	8	4.235	1_PGC043
1_PGC031	8	9	0.070	1_PGC043
1_PGC031	9	10	0.129	1_PGC043
1_PGC032	0	1	0.787	1_PGC043
1_PGC032	1	2	0.562	1_PGC043
1_PGC032	2	3	0.394	1_PGC043
1_PGC032	3	4	0.593	1_PGC043
1_PGC032	4	5	0.701	1_PGC418
1_PGC032	5	6	2.211	1_PGC418
1_PGC032	6	7	3.322	1_PGC418
1_PGC032	7	8	3.434	1_PGC418
1_PGC032	8	9	2.008	1_PGC418
1_PGC032	9	10	1.433	1_PGC418
1_PGC039	0	1	0.536	1_PGC418
1_PGC039	1	2	0.971	1_PGC418
1_PGC039	2	3	1.290	1_PGC418
1_PGC039	3	4	0.290	1_PGC418
1_PGC039	4	5	0.078	1_PGC419
1_PGC039	5	6	0.355	1_PGC419
1_PGC039	6	7	0.149	1_PGC419
1_PGC039	7	8	0.100	1_PGC419
1_PGC039	8	9	0.452	1_PGC419
1_PGC039	9	10	0.087	1_PGC419
1_PGC041	0	1	4.791	1_PGC419
1_PGC041	1	2	1.266	1_PGC419
1_PGC041	2	3	1.216	1_PGC419
1_PGC041	3	4	1.043	1_PGC419
1_PGC041	4	5	0.478	1_PGC427
1_PGC041	5	6	0.759	1_PGC427
1_PGC041	6	7	0.240	1_PGC427
1_PGC041	7	8	0.096	1_PGC427
1_PGC041	8	9	0.320	1_PGC427
1_PGC041	9	10	0.086	1_PGC427
1_PGC042	0	1	1.754	 1_PGC427
1_PGC042	1	2	0.637	1_PGC427

Appendix B (continued) Results for Peranggih Close Spaced RAB Drilling Campaign 2017

То

(m)

Au

g/t

0.934

0.453

0.811

1.198

1.008

1.586

3.205

0.966

0.545

0.302

0.361

0.498

0.628

0.613

0.594

4.846

5.916

2.479

0.273

0.314

0.624

3.490

2.880

1.550

1.490

1.460

0.480

0.420

0.235

0.032

2.120

0.177

4.340

2.840

1.690

3.410

2.370

1.910

0.300

0.750

0.895

1.286

0.144

0.174

0.243

0.331

From

(m)

Hole ID	From (m)	To (m)	Au g/t
1_PGC427	8	9	0.261
1_PGC427	9	10	0.426
1_PGC428	0	1	0.430
1_PGC428	1	2	1.030
1_PGC428	2	3	1.882
1_PGC428	3	4	4.973
1_PGC428	4	5	4.238
1_PGC428	5	6	9.180
1_PGC428	6	7	1.745
1_PGC428	7	8	1.620
1_PGC428	8	9	2.629
1_PGC428	9	10	0.922
1_PGC429	0	1	0.250
1_PGC429	1	2	0.500
1_PGC429	2	3	1.827
1_PGC429	3	4	7.948
1_PGC429	4	5	0.434
1_PGC429	5	6	3.620
1_PGC429	6	7	1.828
1_PGC429	7	8	1.387
1_PGC429	8	9	1.741
1_PGC429	9	10	1.755
1_PGC430	0	1	2.521
1_PGC430	1	2	0.678
1_PGC430	2	3	0.452
1_PGC430	3	4	1.884
1_PGC430	4	5	1.230
1_PGC430	5	6	3.280
1_PGC430	6	7	6.250
1_PGC430	7	8	3.110
1_PGC430	8	9	2.840
1_PGC430	9	10	2.630
1_PGC431	0	1	0.210
1_PGC431	1	2	0.450
1_PGC431	2	3	0.242
1_PGC431	3	4	0.388
1_PGC431	4	5	0.181
1_PGC431	5	6	0.288
1_PGC431	6	7	0.338
1_PGC431	7	8	0.296
1_PGC431	8	9	1.481
1_PGC431	9	10	0.693