

Monument Announces NOA 7/8 Drilling Program Results at Burnakura Gold Project

Vancouver, B.C. Monument Mining Limited (TSX-V: MMY and FSE: D7Q1) ("Monument" or the "Company") is pleased to announce encouraging results of 1,333m exploration and metallurgical drilling for 5 holes at North of Alliance 7/8 ("NOA 7/8"), which have the potential to increase the Burnakura gold resources. Additional targets for extension and resource definition drilling were identified.

The NOA 7/8 exploration drill program is one of three drilling programs completed successfully within two months in May and June 2018 (refer to News Release dated August 8, 2018). It comprised three exploration drill holes and two metallurgical drill holes and consisted of both Reverse Circulation ("RC") and Diamond Drilling ("DD"). The program was focused on extending NOA 7/8 mineralization down plunge, and providing additional samples from NOA 7/8 to further progress metallurgical testwork. All assays have already been received, with a view of increasing its gold resources in underground fresh material, and collection of metallurgical samples for testwork.

Highlights

NOA 7/8 program was successful in extending the known mineralization approximately 130m down plunge. Significant intercepts are listed in Table 1.

Area	Hole ID	From	То	Length (m)*	Sample Type	Au g/t
NOA7_8	18DDHMET1	145.10	146.00	0.90	CORE	1.21
NOA7_8	18DDHMET1	149.00	161.00	12.00	CORE	6.80
NOA7_8	18RCDDH3	241.00	242.70	1.70	CORE	4.48
NOA7_8	18RCDDH9	232.37	235.00	2.63	CORE	1.97
NOA7_8	18RCDDH9	241.00	247.00	6.00	CORE	4.16
NOA7_8	18RCDDH9	250.85	252.00	1.15	CORE	2.21
NOA7_8	18RCDDHMET2	187.00	188.00	1.00	CORE	1.07
NOA7_8	18RCDDHMET2	191.00	203.00	12.00	CORE	8.02
NOA7_8	18RCDDHMET2	222.10	224.00	1.90	CORE	3.46
NOA7_8	18RCDDHMET2	228.00	229.00	1.00	CORE	2.45

Table 1: Significant intercept results (>= 1g/t Au) for NOA7/8 Deep Exploration Drilling

* true mineralization widths are unknown

The collar locations for NOA 7/8 drilling for 2018 program are shown in Figure 1, indicating the drill holes with significant intercepts. The full set of drill results for the holes with significant intercepts are listed in Appendix A and Appendix B.

Figure 1 – Collar location map for NOA 7/8 drilling

NOA 7/8 Deep Exploration

NOA 7/8 is the northernmost portion of the North of Alliance ("NOA") deposits at Burnakura Project with Indicated Resource of 114 koz Au @ 4.6 g/t Au and Inferred Resource of 4 koz @ 3.9 g/t Au (refer to "NI 43-101 Technical Report: Updated Mineral Resources, Burnakura Gold Project, Western Australia, Australia" dated July 17, 2018, prepared by SRK Consulting (Australasia) Pty Ltd. at www.sedar.com). It contains a mineralised zone over a strike length of 560m, hosted by predominantly sedimentary and felsic volcanoclastic units. The target

drilled represents a down-plunge extension of the high grade mineralization, as shown in Figure 2.

Three deep holes (868m in total) successfully extended NOA 7/8 northerly down plunge, confirming the understanding of mineralization geometry as predicted. Several structural readings have been taken which are integrating a regional structural study in progress.

Further drilling is needed to increase the confidence on the geometry and continuity of the mineralization (see Figure 2). The deposit is still open at depth, and further additions are highly likely with a follow-up drilling extension program. The significant intercepts for all drilling at the NOA 7/8 drill program presented in Table 1 shows the great potential of mineral inventory expansion on the drilled target. The outcome of the drilling is encouraging, extending the known mineralization at depth and assisting in the understanding of mineralization and underground potential at NOA 7/8.

Figure 2 – Long Section for NOA 7/8 deep drilling, looking west, showing significant intercepts and interpretation for mineralization

The results in general show widths and grade that can be sued to assess underground mining opportunities. A follow-up drilling program is being designed to further extend the finalization at depth, to increase the confidence on the mineralization geometry and grades, encouraging further underground mining economic study. Figure 3 shows an example of core samples for mineralized zones, with assayed grade results.

Figure 3 - Assay results from drill hole 18RCDDH9 (grades in g/t Au)

Grades received indicate the underground potential for NOA 7/8. Further drilling is however needed to allow interpretation and incorporation into a resource model. With the style of mineralization, the current drill spacing is too wide to infer a resource. A follow up program is being designed to both extend and define the mineralization at depth. A suitably powerful RC rig can perform follow up infill, but a DD rig would be needed to discover further extensions at depth. The deposit is still clearly open at depth, with the potential to extend the resource further with deeper drilling.

NOA 7/8 Metallurgical Drilling

Two metallurgical holes (465m in total, of which 123m RC and 342m DD drilling) successfully intersected known areas of mineralization at the NOA 7/8 deep, providing sufficient representative core sample material for further testwork. Also the grade and width of the intercepts has evidenced the existence of high grade underground mineralization of NOA 7/8. Figure 4 shows one example of core samples within a mineralized zone.

Figure 4 - Assay results from drill hole 18DDHMET1 (grades in g/t Au)

Mineralogical and metallurgical testwork is underway at ALS laboratories, and is being supervised by Orway Mineral Consultants Pty Ltd ("OMC").

The scientific and technical information in this press release has been prepared by Mark Lynch-Staunton, MCSM, MAIG, M.Sc Mining Geology; and supervised and approved by Roger Stangler, MEng, MAusIMM, MAIG, a Qualified Person as defined by NI43-101, both retained by Monument Mining Limited.

About Monument

Monument Mining Limited (TSX-V: MMY, FSE: D7Q1) is an established Canadian gold producer that owns and operates the Selinsing Gold Mine in Malaysia. Its experienced management team is committed to growth and is advancing several exploration and development projects including the Mengapur Copper-Iron Project, in Pahang State of Malaysia, and the Murchison Gold Projects comprising Burnakura, Gabanintha and Tuckanarra in the Murchison area of Western Australia. The Company employs approximately 195 people in both regions and is

committed to the highest standards of environmental management, social responsibility, and health and safety for its employees and neighboring communities.

Cathy Zhai, President and CEO Monument Mining Limited Suite 1580 -1100 Melville Street Vancouver, BC V6E 4A6

FOR FURTHER INFORMATION visit the company web site at www.monumentmining.com or contact:

Richard Cushing, MMY Vancouver	T: +1-604-638-1661 x102	rcushing@monumentmining.com
Wolfgang Seybold, Axino GmbH	T: +49 711-82 09 7211	wolfgang.seybold@axino.com

"Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release."

Forward-Looking Statement

This news release includes statements containing forward-looking information about Monument, its business and future plans ("forwardlooking statements"). Forward-looking statements are statements that involve expectations, plans, objectives or future events that are not historical facts and include the Company's plans with respect to its mineral projects and the timing and results of proposed programs and events referred to in this news release. Generally, forward-looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or state that certain actions, events or results "may", "could", "would", "might" or "will be taken", "occur" or "be achieved". The forward-looking statements in this news release are subject to various risks, uncertainties and other factors that could cause actual results or achievements to differ materially from those expressed or implied by the forward-looking statements. These risks and certain other factors include, without limitation: risks related to general business, economic, competitive, geopolitical and social uncertainties; uncertainties regarding the results of current exploration activities; uncertainties in the progress and timing of development activities; foreign operations risks; other risks inherent in the mining industry and other risks described in the management discussion and analysis of the Company and the technical reports on the Company's projects, all of which are available under the profile of the Company on SEDAR at www.sedar.com. Material factors and assumptions used to develop forward-looking statements in this news release include: expectations regarding the estimated cash cost per ounce of gold production and the estimated cash flows which may be generated from the operations, general economic factors and other factors that may be beyond the control of Monument; assumptions and expectations regarding the results of exploration on the Company's projects; assumptions regarding the future price of gold of other minerals; the timing and amount of estimated future production; the expected timing and results of development and exploration activities; costs of future activities; capital and operating expenditures; success of exploration activities; mining or processing issues; exchange rates; and all of the factors and assumptions described in the management discussion and analysis of the Company and the technical reports on the Company's projects, all of which are available under the profile of the Company on SEDAR at www.sedar.com. Although the Company has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking statements, there may be other factors that cause results not to be as anticipated, estimated or intended. There can be no assurance that such statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. The Company does not undertake to update any forward-looking statements, except in accordance with applicable securities laws.

NOA 7/8 Exploration KC and DD Drining Campaign 2018: conditionates in MGA94, Zone 50 grid											
Hole ID	End of Hole	East	North	RL	Dip	Azimuth					
	Depth (m)	(m)	(m)	(m)							
18DDHMET1	200.4	645629.7	7011360	457.45	-77.1	272.8					
18RCDDHMET2	264.5	645621.3	7011506	457.05	-75.2	271.3					
18RCDDH3	300.9	645635.1	7011570	456.69	-81.3	269.7					
18RCDDH9	263.0	645606.6	7011680	456.27	-87.8	282.3					

Appendix A Campaign 2018: collar coordinates in MGA94, Zone 50 grid NOA 7/8 Exploration RC and DD Drillin

Hole ID	From (m)	To (m)	Au g/t	Hole ID	From (m)	To (m)	Au g/t		Hole ID	From (m)	To (m)	Au g/t
18DDHMET1	0	144	-	18RCDDH3	178	179	0.005		18RCDDH3	218	219	0.005
18DDHMET1	144	145.1	0.04	18RCDDH3	179	180	0.005		18RCDDH3	219	220	0.005
18DDHMET1	145.1	146	1.21	18RCDDH3	180	181	0.005		18RCDDH3	220	221	0.005
18DDHMET1	146	147	0.14	18RCDDH3	181	182	0.005		18RCDDH3	221	222	0.005
18DDHMET1	147	148	0.35	18RCDDH3	182	182.5	0.005		18RCDDH3	222	223	0.005
18DDHMET1	148	149	0.5	18RCDDH3	182.5	183	0.005		18RCDDH3	223	224	0.005
18DDHMET1	149	150	1.31	18RCDDH3	183	184	0.005		18RCDDH3	224	225	0.005
18DDHMET1	150	151	8.48	18RCDDH3	184	184.67	0.005		18RCDDH3	225	226	0.005
18DDHMET1	151	152	5.5	18RCDDH3	184.67	184.95	0.005		18RCDDH3	226	227	0.005
18DDHMET1	152	153	5.45	18RCDDH3	184.95	186	0.005		18RCDDH3	227	228	0.005
18DDHMET1	153	154	4.45	18RCDDH3	186	187	0.005		18RCDDH3	228	229	0.005
18DDHMET1	154	155	1.38	18RCDDH3	187	188	0.005		18RCDDH3	229	230	0.005
18DDHMET1	155	156	4.56	18RCDDH3	188	189	0.005		18RCDDH3	230	231	0.005
18DDHMET1	156	157	4.6	18RCDDH3	189	189.84	0.005		18RCDDH3	231	232	0.01
18DDHMET1	157	158	11.2	18RCDDH3	189.84	190.43	0.005		18RCDDH3	232	233	0.01
18DDHMET1	158	159	9.65	18RCDDH3	190.43	191.05	0.005	1	18RCDDH3	233	234	0.005
18DDHMET1	159	160	18.45	18RCDDH3	191.05	191.6	0.02	1	18RCDDH3	234	235	0.005
18DDHMET1	160	160.5	9.03	18RCDDH3	191.6	192.5	0.01	1	18RCDDH3	235	236	0.005
18DDHMET1	160.5	161	4.11	18RCDDH3	192.5	193.25	0.03	1	18RCDDH3	236	237	0.01
18DDHMET1	161	162	0.01	18RCDDH3	193.25	194	0.02	1	18RCDDH3	237	237.95	0.02
18DDHMET1	162	200.4	-	18RCDDH3	194	195	0.1		18RCDDH3	237.95	239	0.46
18RCDDH3	0	156.57	-	18RCDDH3	195	196	0.01		18RCDDH3	239	240	0.56
18RCDDH3	156.57	157	0.03	18RCDDH3	196	197	0.005		18RCDDH3	240	241	0.7
18RCDDH3	157	158	0.02	18RCDDH3	197	198	0.02	1	18RCDDH3	241	242	6.41
18RCDDH3	158	159	0.01	18RCDDH3	198	198.6	0.16	1	18RCDDH3	242	242.7	1.72
18RCDDH3	159	160	0.01	18RCDDH3	198.6	199.6	0.01		18RCDDH3	242.7	243.5	0.35
18RCDDH3	160	160.95	0.01	18RCDDH3	199.6	200.63	0.005		18RCDDH3	243.5	244	0.17
18RCDDH3	160.95	162	0.01	18RCDDH3	200.63	201.23	0.005	1	18RCDDH3	244	245	0.28
18RCDDH3	162	163	0.01	18RCDDH3	201.23	202.4	0.005	1	18RCDDH3	245	246	0.23
18RCDDH3	163	164	0.06	18RCDDH3	202.4	203.34	0.005		18RCDDH3	246	247	0.35
18RCDDH3	164	165	0.01	18RCDDH3	203.34	204.4	0.005		18RCDDH3	247	247.8	0.2
18RCDDH3	165	166	0.005	18RCDDH3	204.4	205.4	0.005		18RCDDH3	247.8	248.5	0.07
18RCDDH3	166	166.58	0.02	18RCDDH3	205.4	206.2	0.005	1	18RCDDH3	248.5	249	0.31
18RCDDH3	166.58	167.48	0.02	18RCDDH3	206.6	207.2	0.005	1	18RCDDH3	249	250	0.85
18RCDDH3	167.48	168	0.05	18RCDDH3	207.2	208.2	0.005		18RCDDH3	250	250.76	0.01
18RCDDH3	168	168.95	0.07	18RCDDH3	208.2	209.25	0.005	1	18RCDDH3	250.76	260.8	0.01
18RCDDH3	168.95	170	0.005	18RCDDH3	209.25	209.7	0.005	1	18RCDDH3	260.8	300.9	-
18RCDDH3	170	171	0.01	18RCDDH3	209.7	210.2	0.005		18RCDDH9	0	205.26	-
18RCDDH3	171	172	0.01	18RCDDH3	210.2	211	0.005	1	18RCDDH9	205.26	206	0.005
18RCDDH3	172	172.9	0.01	18RCDDH3	211	212	0.005	1	18RCDDH9	206	207	0.02
18RCDDH3	172.9	173.4	0.005	18RCDDH3	212	213	0.005		18RCDDH9	207	208	0.005
18RCDDH3	173.4	174	0.005	18RCDDH3	213	214.05	0.005	1	18RCDDH9	208	209	0.005
18RCDDH3	174	175.05	0.005	18RCDDH3	214.05	215	0.005	1	18RCDDH9	209	209.52	0.005
18RCDDH3	175.05	176	0.005	18RCDDH3	215	216.2	0.005	1	18RCDDH9	209.52	210	0.005
18RCDDH3	176	177	0.005	18RCDDH3	216.2	217.35	0.005	1	18RCDDH9	210	211.2	0.01
18RCDDH3	177	178	0.005	18RCDDH3	217.35	218	0.005	1	18RCDDH9	211.2	212	0.01

Appendix B Assay Results for NOA 7/8 RC and DD Drilling Campaign 2018

	From To		Au		Hale ID	From	То	Au	
Hole ID	(m)	(m)	g/t		Hole ID	(m)	(m)	g/t	
18RCDDH9	212	213	0.02		18RCDDHMET2	186	186.5	0.14	
18RCDDH9	213	214	0.02		18RCDDHMET2	186.5	187	0.13	
18RCDDH9	214	215	0.01		18RCDDH9	212	213	0.02	
18RCDDH9	215	216	0.01		18RCDDHMET2	202	203	3.57	
18RCDDH9	216	216.78	0.01		18RCDDHMET2	203	204	0.58	
18RCDDH9	216.78	218	0.01		18RCDDHMET2	204	205	0.39	
18RCDDH9	218	219	0.005		18RCDDHMET2	205	205.5	0.15	
18RCDDH9	219	220.23	0.005		18RCDDHMET2	205.5	206	0.03	
18RCDDH9	220.23	221	0.07		18RCDDHMET2	221	221.56	0.02	
18RCDDH9	221	222	0.22		18RCDDHMET2	221.56	222.1	0.59	
18RCDDH9	222	223	0.14		18RCDDHMET2	222.1	223	5.81	
18RCDDH9	223	224.2	0.06		18RCDDHMET2	223	224	1.35	
18RCDDH9	224.2	225	0.005		18RCDDHMET2	224	225	0.63	
18RCDDH9	225	226	0.03		18RCDDHMET2	225	226	0.42	
18RCDDH9	226	227.2	0.02		18RCDDHMET2	226	227	0.71	
18RCDDH9	227.2	228	0.05		18RCDDHMET2	227	228	0.58	
18RCDDH9	228	229	0.01		18RCDDHMET2	228	229	2.45	
18RCDDH9	229	230	0.65		18RCDDHMET2	229	230	0.02	
18RCDDH9	230	231	0.22		18RCDDHMET2	230	231	0.02	
18RCDDH9	231	232.37	0.18		18RCDDHMET2	231	232	0.11	
18RCDDH9	232.37	233	1.69		18RCDDHMET2	232	233	0.1	
18RCDDH9	233	234	1.55		18RCDDHMET2	233	234	0.13	
18RCDDH9	234	235	2.56		18RCDDHMET2	234	235	0.27	
18RCDDH9	235	236	0.64		18RCDDHMET2	235	236	0.05	
18RCDDH9	236	237	0.14		18RCDDHMET2	236	237	0.005	
18RCDDH9	237	238	0.37		18RCDDHMET2	237	238	0.005	
18RCDDH9	238	239	0.01		18RCDDHMET2	238	239	0.005	
18RCDDH9	239	240	0.74		18RCDDHMET2	239	240	0.005	
18RCDDH9	240	241	0.3		18RCDDHMET2	240	241	0.005	
18RCDDH9	241	242	1.68		18RCDDHMET2	241	242	0.005	
18RCDDH9	242	243	5.69		18RCDDHMET2	242	243	0.01	
18RCDDH9	243	244	5.01		18RCDDHMET2	243	244	0.005	
18RCDDH9	244	245	3.11		18RCDDHMET2	244	245	0.005	
18RCDDH9	245	246.2	6.44		18RCDDHMET2	245	246	0.005	
18RCDDH9	246.2	247	2.21		18RCDDHMET2	246	246.5	0.005	
18RCDDH9	247	248	0.79		18RCDDHMET2	246.5	247	0.06	
18RCDDH9	248	249.7	0.3		18RCDDHMET2	247	248	0.01	
18RCDDH9	249.7	250.85	0.56			-		I	
18RCDDH9	250.85	252	2.21						
18RCDDH9	252	253	0.01						
18RCDDH9	253	254	0.01						
18RCDDH9	254	255	0.01						
18RCDDH9	255	263	-						
18RCDDHMET2	0	186	-						

Appendix B (continued) Assay Results for NOA 7/8 RC and DD Drilling Campaign 2018